Join us   Log in   shruti@ubitechsolutions.com  


INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY - Volume 38, Number 1, Jan-March

Pages: 0-0
Print Article   Download XML  Download PDF

RATE ENHANCEMENTS DUE TO AQUEOUS SULFURIC ACID IN Mn (III) OXIDATION OF CERTAIN PURINE ALKALOIDS - KINETIC ANALYSIS OF ACIDITY FUNCTIONS

Author: A. Ramakrishna Reddy1, 2, J. Prasad3 , M. Bhooshan2, 3, K. C. Rajanna3, ?, A. Panasa Reddy3 and M. Thirumala Chary1

Category: Research

Abstract:

Kinetics and mechanism of purine-based alkaloids like caffeine, theobromine, and theophylline, have been studied using Mn (III) sulfate as an efficient reagent in an aqueous sulfuric acid medium. Progress of the reaction is for the oxidation of xanthine alkaloids has been studied at 520 nm wavelength (λ). Reactions indicated first-order kinetics in [Mn (III)], and [xanthine alkaloid]. Reaction rates accelerated with an increase in acid concentration and temperature. Eyring’s and Gibbs- Helmholtz equations were used for the calculation of activation parameters. Observed rate enhancements herein, are analyzed by Zucker-Hammett, Bunnett, and Bunnett-Olsen criteria of acidity functions. The results found as per Bunnett-Olsen criteria of acidity functions, the most plausible mechanism has been proposed by considering the participation of H2O molecule, as a proton transferring agent in RD (Rate Determining) step.

Keywords: s: Mn (III) Sulfate Oxidation, Purine-based Alkaloids, Acid Catalysis, Zucker-Hammett, Bunnett, BunnettOlsen, Acidity Functions.

References:

1. F. A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th Edition, Wiley, New York.

2. K. Doris, Journal of Chemical Education, 65, 1004(1988), https://doi.org/10.1021/ed065p1004.2

3. C.L.A. Arora, Journal of Chemical Education, 54, 302(1977), https://doi.org/10.1021/ed054p302

4. P. Ruoff, Journal of Chemical Education, 64, 624(1987), https://doi.org/10.1021/ed064p624

5. H. Diebler, N. Sutin, Journal of Physical Chemistry, 68, 174(1964), https://doi.org/10.1021/j100783a029

6. I.K. Bhat, B.S. Sherigara, and I. Pinto, Transition Metal Chemistry ,18, 163(1963), https://doi.org/10.1007/BF00139948

7. I. Bozor and L.I. Simándi, Journal of Chemical Society Dalton Trans, 16,3226(2002), https://doi.org/10.1039/B204678D

8. G. Giraudi, E. Mentasti, Transition Metal Chemistry, 6, 230(1981), https://doi.org/10.1007/BF00618231

9. K.S. Rangappa, S. Chandraju, N.M. Made Gowda, International Journal of Chemical Kinetics, 30, 7(1998), https://doi.org/10.1002/(SICI)1097-4601(1998)30:13.0.CO;2-W

10. K.S. Rangappa, N. Anitha, Ayesha Nikath, M, K.M.L. Rai, N.M. Made Gowda, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 31, 713(2001), https://doi.org/10.1081/SIM-100104844

11. K.S. Rangappa, N. Anitha, N.M. Made Gowda, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 31, 1499(2001), https://doi.org/10.1081/SIM-100107212

12. B.K. Kempe Gowda, H.S. Prasad, K.S. Rangappa, D. Channe Gowda, International Journal of Chemical Kinetics, 34, 39(2002), https://doi.org/10.1002/kin.10015

13. A. Katafias, J. Fenska, Transition Metal Chemistry, 36, 801(2011), https://doi.org/10.1007/s11243- 011-9534-7

14. H. Ashihara, K. Mizuno, T. Yokota, and A. Crozier, Xanthine Alkaloids: Occurrence, Biosynthesis, and Function in Plants, Progress in the Chemistry of Organic Natural Products, pp.1–88, (2017), https://doi.org/10.1007/978-3-319-49712-9_1

15. A. White, P. Handler, E.L. Smith, Principles of Biochemistry, McGraw-Hill, New York, pp.947, (1973)

16. D.E. Metzler, “Biochemistry: The Chemical Reactions of Living Cells,” Academic Press, New York, 882, (1977)

17. S. Shylaja, K.C. Rajanna, K. Ramesh, K. Rajendar Reddy, P. Giridhar Reddy,Advances in Physical Chemistry, (2013) Article ID 835610(2013), https://doi.org/10.1155/2013/835610

18. S. Shylaja, K.C. Rajanna, K. Ramesh, P. Giridhar Reddy, P.K. Saiprakash, International Journal of Organic Chemistry, 1, 148(2011), https://doi.org/10.4236/ijoc.2011.14022

19. V.H. Rajeshwari, P.S. Anita, S.T. Nandibewoor, S.A. Chimatadar, Journal of Solution Chemistry, 41, 567(2012), https://doi.org/10.1007/s10953-012-9819-2

20. A. Fawzy, I.A. Zaafarany, K.S. Khairou, L.S. Almazroai, T.M. Bawazeer, B.A. Al-Jahdali, Science Journal of Chemistry, 4, 19(2016), https://doi.org/10.11648/j.sjc.20160402.12

21. A. I. Vogel, A text book of quantitative inorganic analysis. Longmans Green and Co., London, 327 (1964)

22. K. A. Connors, Chemical Kinetics: The Study of Reaction Rates in Solution; VCH: New York, 1990.

23. K. J. Laidler, Chemical Kinetics, Third Edition, Harper and Row, New York, 1987.

24. N. S. Isaacs, Physical Organic Chemistry, 2nd Edition, John-Wiley and Sons. Inc, New York, 1987.

25. H. S. Rochester, Acidity Functions, Academic Press, New York, 1970

26. L. Zucker, L.P. Hammett, Journal of the American Chemical Society, 61, 2785(1939), https://doi.org/10.1021/ja01265a066 27. L. Zucker, L.P. Hammett, Journal of the American Chemical Society, 61, 2791(1939), https://doi.org/10.1021/ja01265a067 28. J. P. Bunnett, Journal of the American Chemical Society, 83, 4956(1961), https://doi.org/10.1021/ja01485a019 29. J. P. Bunnett, Journal of the American Chemical Society, 83, 4968(1961), https://doi.org/10.1021/ja01485a020 30. J. P. Bunnett and F.B. Olson, Canadian Journal of Chemistry, 44, 1899(1966), https://doi.org/10.1139/v66-286 31. J. P. Bunnett and F.B. Olson, Canadian Journal of Chemistry, 44, 1917(1966), https://doi.org/10.1139/v66-287 32. R. A. Cox, K. Yates, Acidity functions: An update, Canadian Journal of Chemistry, 61, 2225(1983), https://doi.org/10.1139/v83-388 33. M. A. Paul, F.A. Long, H0 and Related Indicator Acidity Function, Chemical Reviews, 57, 1(1957), https://doi.org/10.1021/cr50013a001 34. L. P. Hammett, Physical Organic Chemistry, McGraw Hill, Tokyo, 1970.