INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY - Volume 38, Number 1, Jan-March
Pages: 122-145
Print Article
Download XML Download PDF
MOLECULARLY IMPRINTED POLYMERIC MICROSPHERES
Author: E. Julita1 , A. Ulianas2, ?, M. S. Ahmad3 , I. M. Isa4 , Yulkifli5 , T. L. Ling6 , Y. Yolanda7 , Nurlely8 and M. Rezayi9
Category: Subject-1
Abstract:
An electrochemical cholesterol sensor based on emulsion photo-polymerized methacrylic acid molecularly imprinted polymers (MIPs) microspheres modified screen-printed electrode (SPE) has been developed. Electrochemical quantitation of cholesterol concentration was performed by means Cyclic Voltammetry (CV) and Square Wave Voltammetry (SWV) technique by using redox couple of potassium ferricyanide [K3Fe(CN)6]. A decrement in the electrochemical CV and SWV signal indicated that the cholesterol molecules were bound to the microspheres’ cavities of the biomimetic MIPs sensor, and formed an electron transfer barrier to the redox species from electron transfer at the electrode surface. Under optimal conditions, the electrochemical MIPs microsensor could detect cholesterol concentration in the linear response range of 0.5 mg L-1 to 50.0 mg L-1 with a limit of detection (LOD) at 0.1 mg L-1 . The MIPs microspheres-modified carbon SPE electrode providing good operational stability to cholesterol sensing of up to 11 days long.
Keywords: Molecularly imprinted Polymeric Microsphere, Cholesterol Electrochemical Sensor, Screen-printed Electrode.
References:
1. H. Yang, L. Li, Y. Ding, D. Ye, Y. Wang, S. Cui and L. Liao, Biosensors and Bioelectronics, 95, 748 (2016), https://doi.org/10.1016/j.bios.2016.09.081
2. L.H. Li, E.P. Dutkiewicz, Y.C. Huang, H.B. Zhou and C.C. Hsu, Journal Food and Drug Analysis, xxx, 1(2018), https://doi.org/10.1016/j.jfda.2018.09.001
3. B. Sellergren and K.J. Shea, Journal of Chronramgmphy, 635, 31(1993), https://doi.org/10.1016/0021- 9673(93)83112-6
4. O. Brüggemann, Advances in Biochemical Engineering/Biotechnology, 76, 127(2002), https://doi.org/10.1007/3-540-45345-8_4
5. B. Danielsson, Advances in Biochemical Engineering/Biotechnology, 109, 97(2008), https://doi.org/10.1007/10_2007_088
6. D. Futra, L.Y. Heng, M.Z. Jaapar, A. Ulianas, K. Saeedfara and T.L. Ling, Analytical Methods, 8, 1381(2016), https://doi.org/10.1039/c5ay02796a
7. A. Mulyasuryani and A. Savitri, Jurnal Kimia VALENSI: Jurnal Penelitian dan Pengembangan Ilmu Kimia, 1, 97(2015), https://doi.org/10.15408/jkv.v0i0.3146
8. J. Ji, Z. Zhou, X. Zhao, J. Sun, X. Sun, Biosensors and Bioelectronics, 66, 590(2014), https://doi.org/10.1016/j.bios.2014.12.014
9. N.A. Azis, I.M. Isa, N. Hashim, M.S. Ahmad, S. Nur, A.M. Yazid, M.I. Saidin, Suyanta, R. Zainul, A. Ulianas, S. Mukdasai, International Journal of Electrochemical Science, 14, 10607(2019), https://doi.org/10.20964/2019.11.46
10. M.S. Ahmad, I.M. Isa, N. Hashim, M.I. Saidin, Suyanta, R. Zainul, A. Ulianas, S. Mukdasai, International Journal of Electrochemical Science, 14, 9080(2019), https://doi.org/10.20964/2019.09.54
11. R.J. Bautista, W. Aperador, M.R. Joya, Rasayan Journal of Chemistry, 13, 2092(2020), https://doi.org/10.31788/RJC.2020.1345854
12. D.L. Pavia, G.M, Lampman, G.S. Kriz, J.A. Vyvyan, Introduction To Spectroscopy, Department of Chemistry Western Washington University Bellingham, Washington, p30, 4, (2009)
13. J. Wang, Analytical Electrochemistry, Las Cruces, New Mexico, 2, pp.121 (2000).
14. Deswati, S. Hamzar, Z. Rahmiana, P. Hilfi, Buchari, S. Henry, Rasayan Journal of Chemistry, 13, 2045(2020), https://doi.org/10.31788/RJC.2020.1345845
15. X. Ma and M. Chen, Sensors and Actuators B?: Chemical, 215, 445(2015), https://doi.org/10.1016/j.snb.2015.04.016
16. N.A. Yusof, A. Beyan, M.J. Haron and N.A. Ibrahim, Sains Malaysiana, 39(5), 829 (2010). 17. Y. Zhai, Y. Liu, X. Chang, S. Chen, and X. Huang, Analytica Chimica Acta, 593, 123(2007),
|