Join us   Log in   shruti@ubitechsolutions.com  


INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY - Volume 1 Isuue 2, Jan - June

Pages: 1-2
Print Article   Download XML

test-30may

Author: Khushbu Sharma

Category: Subject-1

Abstract:

test-30may

Keywords: werw

Full Text:

To reduce the adverse effects of faults, machine learning (ML) especially the federated learning (FL) approach is deployed. Federated learning is a distributed and decentralized paradigm of protocols. The Federated learning approach is well suited for a distributed system because a set of worker machines (or nodes) can train the local models. Different chunks of datasets are distributed among the worker nodes or third parties. Here sections of a dataset are not shared by the working computational nodes. Thus federated learning is also the most significant model for achieving data privacy and data security in addition to fault tolerance. The existing FL approaches highlight optimizing only one dimension of the target space. The proposed methods can reduce communication costs and improve the efficiency of distributed computing. Federate deep learning (FDL) method minimizes the adverse effects with an improved convergence rate. This approach utilizes a weighted aggregation for accuracy improvement. FDL is capable to detect and diagnose the faults that occur frequently on end-user devices as well as on the edge. FDL is a novel communication efficient FL approach. It incorporates both synchronous and asynchronous arrangements. Federated learning (FL) is a multi-modal machine learning system that trains the algorithm among various distributed and decentralized edge devices that holds local datasets. The intelligent device such as PDAs, smart-phones, and desktops or tablets system has been scaling rapidly in recent years. Most of these devices are equipped with multiple sensors that allow them to produce and consume a huge amount of information. Distributed computing hierarchy consists of cloud, edge, and end-user devices. End-user devices train the local models and use local datasets. End device and client’s behavioral heterogeneity become the key cause of fault inclusion in cloud systems. The cloud system plays a major role in scaling big data.